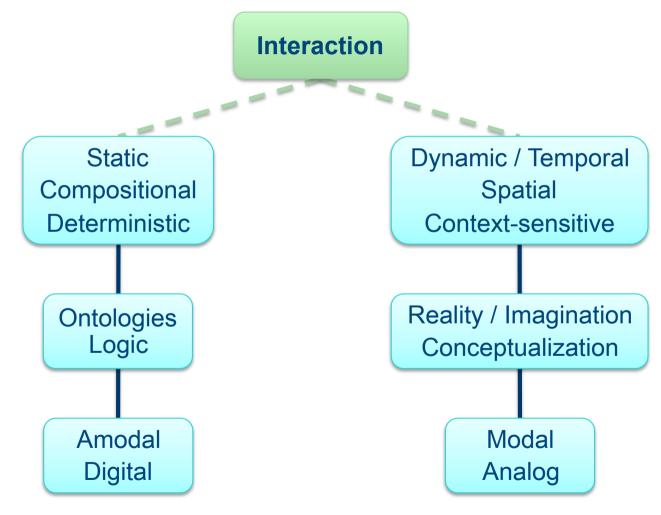
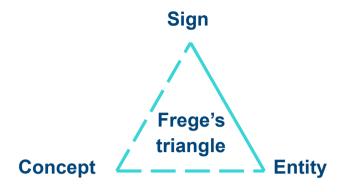
semti / kamols

Polysemy in Controlled Natural Language Texts


Normunds Grūzītis & Guntis Bārzdiņš Workshop on Controlled Natural Language 8–10 June 2009, Marettimo Island, Italy

Agenda

- Polysemy: causes and types
- Supporting polysemy in two alternative controlled natural languages
 - Declarative CNL
 - Ontological knowledge for WSD
 - Procedural CNL
 - Semantics is not based in FOL

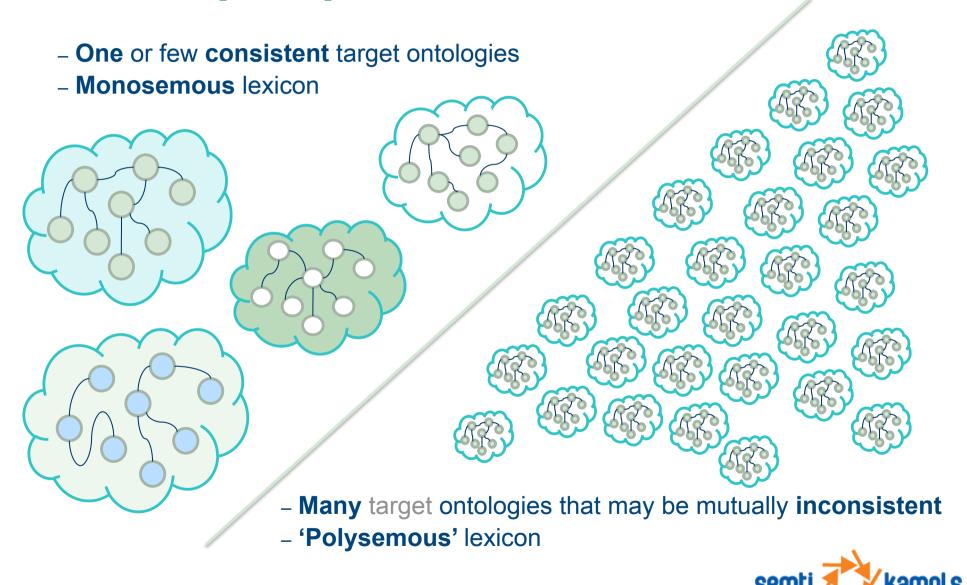


Two Subsets of Natural Language

Polysemy

- 'Finite' set of words (signs)
- Unlimited number of (new) concepts
- ⇒ Reuse of existing words in different contexts
 - Metaphorically (figurative senses)
 "Language is a graveyard of dead metaphors" (Leary, 1994)
 - 2) **Metonymically** e.g., "library" for "building of library"
 - 3) Collocations → multi-word units

Polysemy in a Declarative CNL



Ontological vs. Factual Sentences

- Every mouse is an animal.
- The black mouse is not working properly.
 - It is used by no computer.
- CNL for T-Box vs. A-Box
 - Relieve average users of providing ontological sentences
 - Leave creation of consistent ontologies to knowledge engineers and domain experts
 - ⇒ Polysemy should appear only in the factual sentences, which can refer to the mix of domain ontologies
 - Ontology population with facts
 - Information extraction (IE)
 - Web page descriptions in CNLs (Semantic Web)
 - ⇒ Multi-lingual semantic search engine

User's perspective

Micro-ontologies

- Requirements
 - Internally consistent
 - OWL DL compliant
 - Lexicon-driven (concept naming)Syntax-driven (property mapping)

- Consequences
 - A set of translation equivalents and synonyms can be attached to a concept or property
 - Ontologies themselves are language-independent

WSD as Ontology Merging

- Two sides of the same coin
- Difficult: match the equivalent concepts & properties
 - Facing the word-sense disambiguation problem
 - Lexical naming & syntactic mapping guidelines → hints
- Easy: ensure that the merger is consistent
 - OWL DL reasoners
- Interpretation = consistent matching & merging

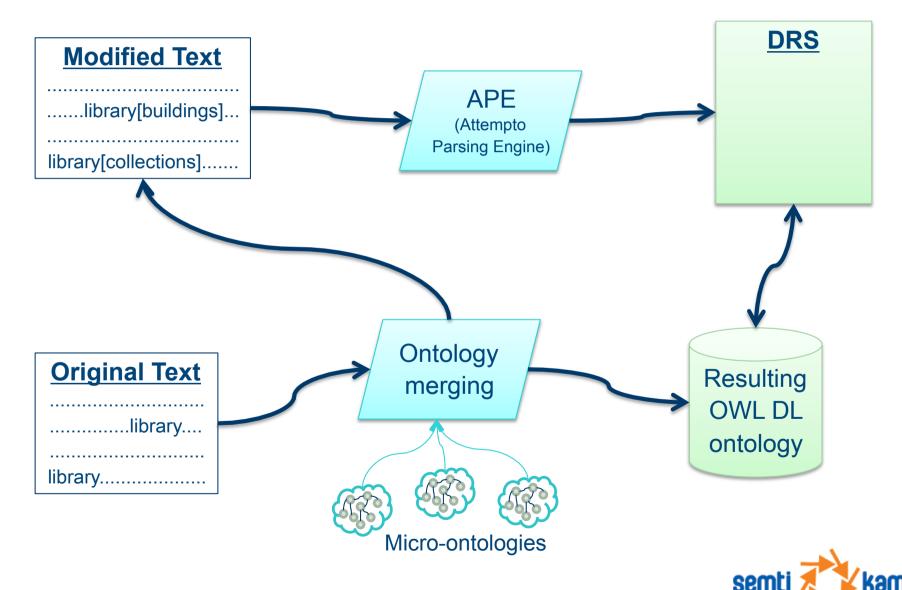
Multi-domain Communication

T-Box	Micro-ontologies		
	Domain	Axioms	
	Buildings	Every building is a construction and has a roof. Every library is a building.	
	Collections	Every collection is an abstract-entity that contains some items. Every library is a collection that contains some publications.	
	General	Every construction is a physical-entity. No physical-entity is an abstract-entity.	
A-Box	Assertions		
	There is a library that has a green roof. The library contains some valuable publications.		

Multi-domain Communication

T-Box	Micro-ontologies			
	Domain	Axioms		
	Merged ontology	Every building is a construction and has a roof. Every library[building] is a building.		
		Every collection is an abstract-entity that contains some items. Every library[collection] is a collection that contains some publications.		
		Every construction is a physical-entity. No physical-entity is an abstract-entity.		
A-Box	Assertions			
	There is a library[building] that has a green roof. The library[collection] contains some valuable publications.			

Solution found through an exhaustive search (with possible user interaction)

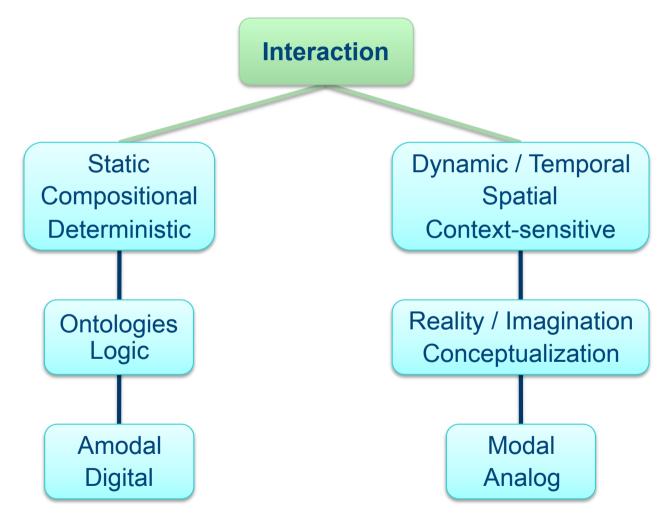

Multi-lingual Communication

T-Box	Micro-ontologies				
	Domain	Axioms			
	#1	<pre>∀x(artifact(x) -> ¬body-part(x)) ∀x(footwear(x) -> artifact(x))</pre>			
	#2	<pre>∀x(shoe_{kurpe}(x) -> footwear(x)) ∀xy(polish_{pucēt}(x,y) -> person(x) & footwear(y))</pre>			
	#3	<pre>∀x(nail_{nags}(x) -> body-part(x)) ∀xy(polish_{vilēt}(x,y) -> person(x) & nail_{nags}(y))</pre>			
A-Box	Assertions				
	Source text		Target text		
	John <u>polishes</u> a <u>shoe.</u> Ann <u>polishes</u> some red <u>nails.</u>		Jānis <u>pucē</u> vienu <u>kurpi</u> . Anna <u>vīlē</u> sarkanus <u>nagus.</u>		

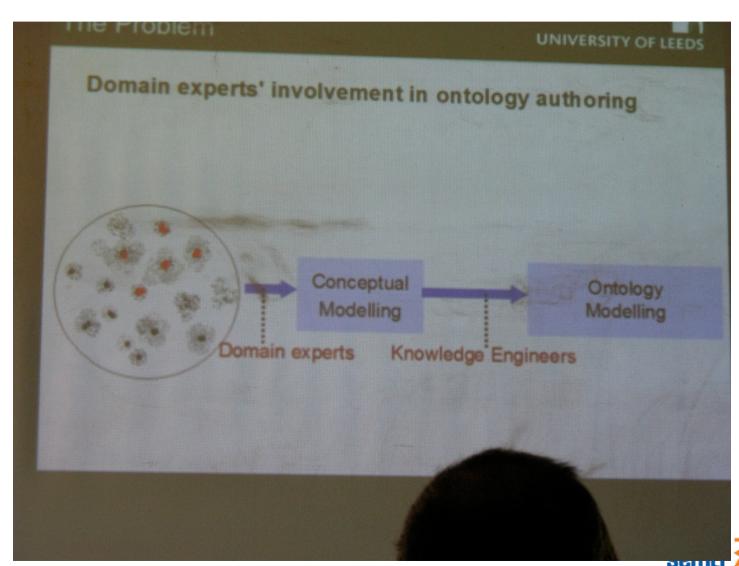
OWL DL micro-ontologies as interlingua

The Overall Picture

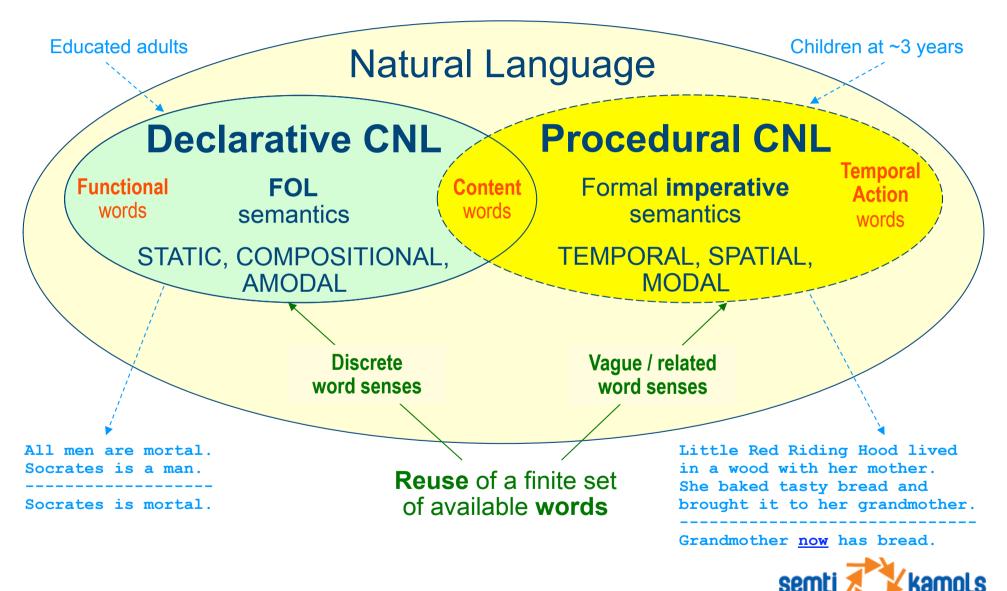
Discussion


- User doesn't have to provide the target ontology
 - Unlimited 'repository' of cross-language micro-ontologies, that are implicitly reused
- User only populates existing ontologies with facts
 - Automatic word-sense disambiguation
- Adaptation of existing domain-ontologies
 - Lexical-driven naming conventions
 - Creation of bridging-ontologies if necessary
- No changes to existing 'monosemous' CNL machinery

Polysemy in a Procedural CNL

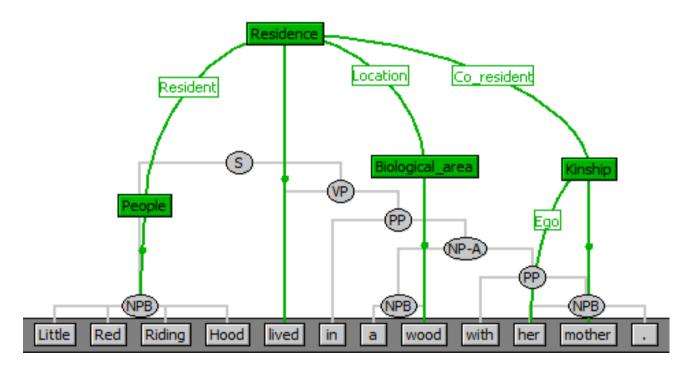


Two Subsets of Natural Language



Ronald Denaux slide

Declarative vs. Procedural CNL


FrameNet

- Developed in ISCI, Berkley by C.Fillmore et.al.
- Consists of ~800 frames (generic situations and objects) and their arguments – frame elements
- Derived from extensive text corpus evidence – new frames caused only by unique argument structure
- Frames organized in inheritance hierarchies
- Largely language independent
 - LexicalUnits assigned to frames
 - back.n (Observable_bodyparts)
 - back.n (Part orientational)
 - back.v (Self motion)
 - back.a (Part orientational)

What is a Procedural CNL?

 Procedural CNL Definition: text that 100% maps into sequential FrameNet OBJECT and SITUATION frames

Polysemy: many lexemes map into the same frame;
 specific lexemes used only for anaphora resolution and visual identification (icons)

Text Example in Procedural CNL

FrameNet annotation + anaphora resolution

- 1. Little Red Riding Hood
- 2. lived
- 3. in a wood
- 4. with her mother.
- 5. She baked
- 6. tasty
- 7 bread
- 8. and brought it
- 9. to her grandmother.

- 1. **people**person=obj4 icon="littleredridinghood.m3d"
- z. residence co-resident=obj11 location=obj8 resident=obj4
- 3. **biological_area** locale=obj8 icon="wood.m3d"
- 4. **kinship**alter=obj11 ego=obj4 icon="mother.m3d"
- 5. **cooking_creation** cook=obj4 food=obj15
- 6. **chemical_sense_description**perception_source=obj15 icon="tasty.label"
- 7. **food** food=obj15 icon="*bread.m3d*"
- 8. **bringing** agent=obj4 goal=obj25 theme=obj15
- 9. **kinship**<u>alter=obj25</u> ego=obj4 icon="*grandmother.m3d*"

Discourse is Model: 3D Animation

Incremental semantic interpretation word-by-word

Role of PDDL

- Planning Domain Description Language (PDDL)
 - Developed by Drew McDermott for planning competitions
 - Central concepts are OBJECTS and ACTIONS
 - ACTIONS have precondition and effect
 - Planning problem: given an initial and goal states, find a sequence of actions (plan) leading from initial to goal state
- PDDL role in Procedural CNL
 - Mapping of FrameNet OBJECTS and <u>sequential SITUATIONS</u> into PDDL language OBJECTS and ACTIONS preserves semantics
 - Planning can be used to fill-in missing actions not mentioned in the text (e.g., to eat an apple, it first needs to be picked up)

PDDL: Classic Logistics Example

Domain description

```
(define (domain logistics-strips)
 (:requirements :strips)
 (:predicates (OBJ ?obi)
    (TRUCK ?truck)
    (LOCATION ?loc)
    (AIRPLANE ?airplane)
    (CITY ?city)
    (AIRPORT ?airport)
                               (at ?obj ?loc)
                               (in ?obi ?obi)
                               (in-city ?obj ?city))
(:action LOAD-TRUCK
 :parameters
 (?ob ?truc ?loc)
 :precondition
 (and (OBJ ?obj) (TRUCK ?truck) (LOCATION ?loc)
 (at ?truck ?loc) (at ?obj ?loc))
 :effect
 (and (not (at ?obj ?loc)) (in ?obj ?truck)))
(:action LOAD-AIRPLANE
 :parameters
 (?ob ?airplan ?loc)
 :precondition
 (and (OBJ ?obj) (AIRPLANE ?airplane)
 (LOCATION ?lo (at ?obj ?loc) (at ?airplane ?loc))
 :effect
 (and (not (at ?obj ?loc)) (in ?obj ?airplane)))
(:action UNLOAD-TRUCK
 :parameters
 (?obj
  ?truck
  ?loc)
 :precondition
 (and (OBJ ?obj) (TRUCK ?truck) (LOCATION ?loc)
    (at ?truck ?loc) (in ?obi ?truck))
```

Planning problem description

```
(define (problem log001)
  (:domain logistics-strips)
  (:obiects
     package1
     package2
     package3
     airplane1
     airplane2
  (:init
     (at package1 pgh-po)
     (at package2 pgh-po)
     (at package3 pgh-po)
     (at airplane1 pgh-airport)
     (at airplane2 pgh-airport)
     (at bos-truck bos-po)
     (at pgh-truck pgh-po)
     (at la-truck la-po)
  (:goal (and
     (at package1 bos-po)
     (at package2 la-po)
     (at package3 bos-po)
```

Plan (problem solution)

1 (load-truck package2 pgh-truck pgh-po) 1 (drive-truck bos-truck bos-po bos-airport bos) 1 (load-truck package3 pgh-truck pgh-po) 1 (drive-truck la-truck la-po la-airport la) 1 (load-truck package1 pgh-truck pgh-po) 2 (drive-truck pgh-truck pgh-po pgh-airport pgh) 3 (unload-truck package3 pgh-truck pgh-airport) 3 (unload-truck package2 pgh-truck pgh-airport) 3 (unload-truck package1 pgh-truck pgh-airport) 4 (load-airplane package1 airplane1 pgh-airport) 4 (load-airplane package2 airplane2 pgh-airport) 4 (load-airplane package3 airplane1 pgh-airport) 5 (fly-airplane airplane2 pgh-airport la-airport) 5 (fly-airplane airplane1 pgh-airport bos-airport) 6 (unload-airplane package1 airplane1 bos-airport) 6 (unload-airplane package2 airplane2 la-airport) 6 (unload-airplane package3 airplane1 bos-airport) 7 (load-truck package2 la-truck la-airport) 7 (load-truck package1 bos-truck bos-airport) 7 (load-truck package3 bos-truck bos-airport) 8 (drive-truck bos-truck bos-airport bos-po bos) 8 (drive-truck la-truck la-airport la-po la) 9 (unload-truck package3 bos-truck bos-po) 9 (unload-truck package2 la-truck la-po)

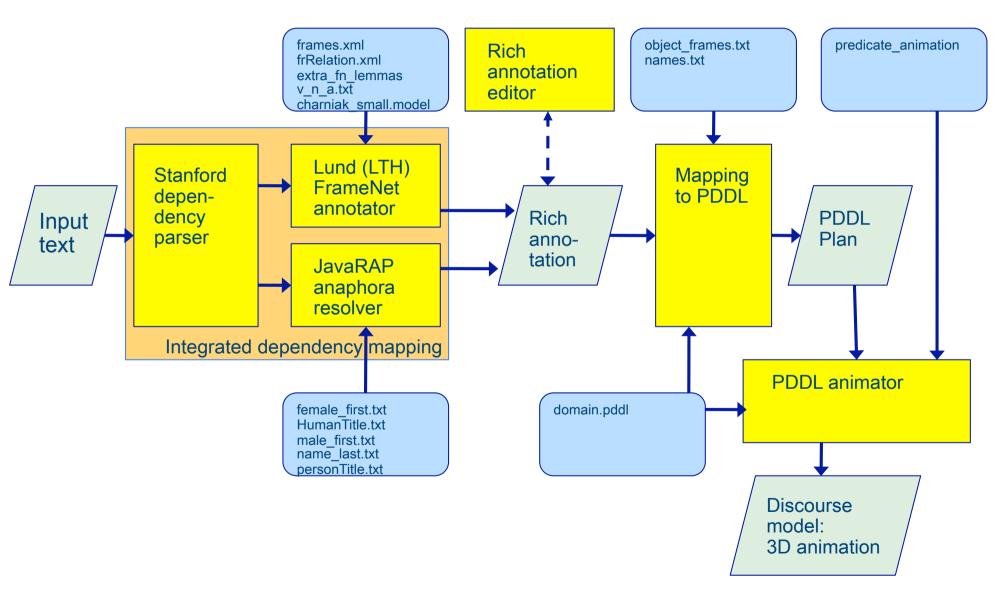
9 (unload-truck package1 bos-truck bos-po)

PDDL: FrameNet Example

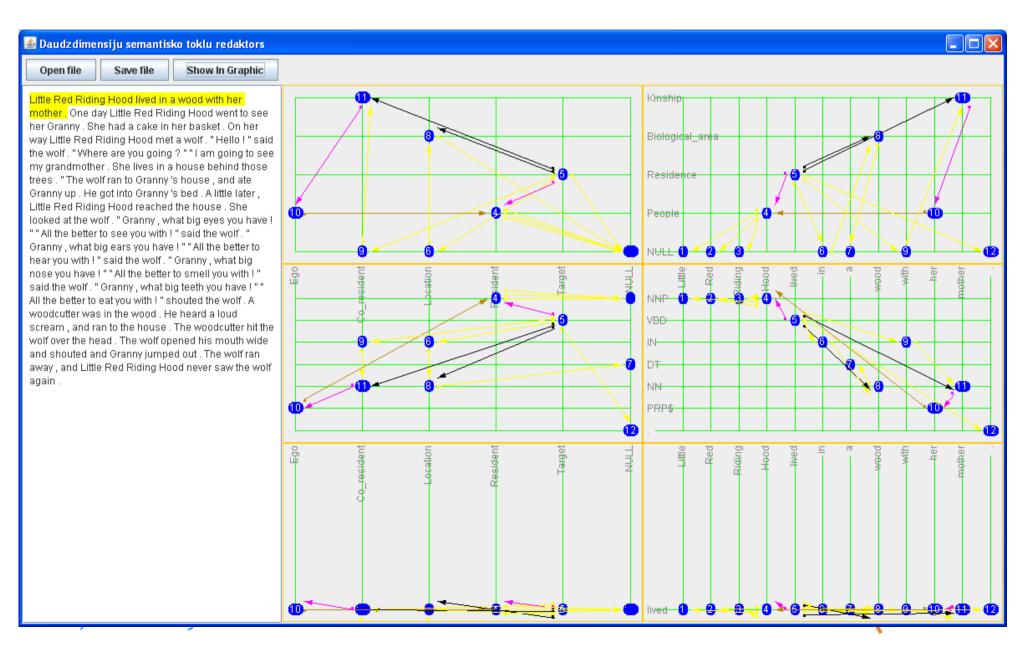
Domain description

```
(define (domain framenet)
(:action residence
 :parameters
  (?co resident ?location ?resident)
  :effect
   (residence ?co resident ?location ?
resident))
(:action bringing
 :parameters
  (?agent ?goal ?theme)
 :precondition
  (in ?theme ?agent)
  :effect
   (and (at ?agent ?goal) (at ?
theme ?goal) ))
(:action people
  :parameters
  (?person ?sprite)
  :effect
   (sprite ?person ?sprite))
```

Plan (extracted directly from the input text)


- 1: people obj4 "littleredridinghood"
- 2: residence obj11 obj8 obj4
- 3: biological_area obj8 "wood"
- 4: kinship obj11 obj4 NULL "mother"
- 5: cooking_creation obj4 obj17 NULL
- 6: chemical-sense_description obj17 NULL "tasty"
- 7: food NULL obj17 "bread"
- 8: bringing obj4 obj25 obj17
- 9: kinship obj25 obj4 NULL "grandmother"

Planning problem description – not used* in Proceural CNL One could envision a special PlanningDomainDescription CNL


* - micro-planning: to eat an aple, it first needs to be picked up

Proof-of-concept Implementation (not yet a truly "controlled" NL)

Rich Annotation Editor

Discussion

- How to integrate Declarative and Procedural CNL?
 - Syntactically: add ACE functional words, predictive parser
 - Semantically: ACE/OWL classes, properties define icons for objects and their static relationships ("A is a mother of B").
 OWL constraints remain as invisible rules, which should be checked after each planned action. FOL model builder could generate objects and their relationships.
- How to implement reasoning in Procedural CNL?
 - Spatial, temporal conceptualisation ("vison") check, whether the generated 3D animation includes a scene triggering perception of the queried situation
 - "Did LittleRedRidingHood visited her grandmother?"
 - "Did grandmother got some bread at the end?"
- Potential applications: control of devices
 - Especially, with the help of visual feedback

Polysemy summary

- To remain "natural", a multi-domain CNL must support ambiguity in the form of (controlled) polysemy
 - library [collection], library [building], live [residence],...
 - Ambiguity can be resolved through domain identification
 - micro-ontologies, FrameNet frames, Wittgenstein's communication games, etc.
- For domain-concept naming, natural language relies on heavy reuse of "small" set of well-known words
 - Through multiword-units, metaphors, metonymy

Thank you!

