
Towards Semantic Latvia
Janis BARZDINS, Guntis BARZDINS, Rihards. BALODIS, Karlis CERANS,

Audris KALNINS, Martins OPMANIS, Karlis PODNIEKS
Institute of Mathematics and Computer Science

University of Latvia, Riga LV-1459, Latvia

Abstract. Tim Berners-Lee and co-authors in their seminal paper “The Semantic
Web”, published in 2001, outlined their vision about the future Semantic Web. But
today we are still far from the implementation of this vision. Despite fundamental
achievements, like definition of OWL (Web Ontology Language) and rapid
progress of RDF/OWL content creation, storage and processing tools, there are
still very few attempts to merge these isolated “islands of success” into a killer
application, understandable and useful also outside the expert academic
community. The primary intent of this paper is to integrate such still isolated
results into the unified “Semantic Latvia” conception. The other intent is to
propose solutions for the identified missing components in the three fields: 1)
technology for gathering of information for the Semantic Web, 2) RDF data stores
and efficient access to this information, 3) Semantic Web query tools based on
MDA approach.

Keywords. Semantic web, domain ontologies, in-memory RDF data sores, MDA,
national information infrastructure

Introduction

Tim Berners-Lee and co-authors in their seminal paper [1] outlined the key principles
for the future Semantic Web. Their vision was based on the assumption that
information will be distributed globally just like web pages in the current WWW,
except this information will be supplemented with the machine-readable semantic
tagging. Such machine readable semantic tagging then would allow software agents to
automatically perform many information processing tasks, which currently can be
handled only manually (like planning a therapy course for Pete’s mom in [1]).

But currently the implementation of this vision is still associated with major
theoretical and technical difficulties. Despite fundamental achievements, like definition
of OWL (Web Ontology Language) and rapid progress of RDF/OWL content creation,
storage and processing tools, there are still not many attempts to merge these results
into the unified “killer application”, which would be understandable and useful also to
the end-users outside the “academic/nerdy ghetto” [2] – to those without knowledge of
OWL and university grade in ontology engineering.

The primary goal of this paper is to integrate the fragmented Semantic Web
achievements into the unified “Semantic Latvia” conception aimed to allow a small
country like Latvia already today to take advantage of the emerging Semantic Web
technologies. In this paper we are intentionally ignoring the privacy issues involved, as
our prime goal is to illustrate the new information system architectures enabled by the
Semantic Web.

The other goal of this paper is to identify what is still missing for such unified
“Semantic Latvia” conception and to propose potential solutions for filling these gaps.
We have identified three gap areas: 1) technology related to information gathering for
the Semantic Web, 2) RDF/OWL data stores providing fast access to this information,
3) Semantic Web query tools based on MDA approach.

In the “Semantic Latvia” conception we want to include only those technologies,
which are either already implemented, or their possible implementation is fairly clear.
These technologies also must fit well into our integrated system. For that reason in the
“Semantic Latvia” conception we have omitted many experimental Semantic Web
developments, which by our judgment have not yet reached “industrial” grade, like
automatic semantic tagging of the natural language documents.

We also want to stress that our “Semantic Latvia” conception is not meant to
replace the traditional information systems. Rather, its chief goal is to enable
completely new kind of integrated information services – precisely as it was envisioned
in [1].

According to the present state-of-the-art, Semantic Web rests on the following five
pillars:

1. Ontologies;
2. RDF/OWL data extraction from distributed heterogeneous information

sources;
3. Efficient storage and retrieval of RDF/OWL data;
4. Languages and tools for Semantic Web end-users;
5. Reasoning process based on the formal semantics of OWL DL.

In the following sections numbered accordingly, we will mostly elaborate the first

four pillars in the context of the proposed “Semantic Latvia” conception. Moreover, we
will keep in mind the Tim Berners-Lee words in [1] that all RDF data must be
“massaged into shape by the office manager (who never took Comp Sci 101) using off-
the-shelf software for writing Semantic Web pages along with resources listed on the
… (domain ontologies) site”.

1. Ontology Engineering – a Starting Point for “Semantic Latvia”

Ontology is a term borrowed from philosophy. But in the context of Semantic Web it is
used in a much more precise sense: “An ontology consists of the various classes and
properties that can be used to describe and represent a domain of knowledge. Classes
represent concepts within a domain or across domains, and properties represent the
relationships among them” [3]. In a sense such ontologies have been used for
Information System design already for decades, because a well-designed classic ER
(entity relationship) model is essentially the same domain ontology. But until recently
these domain ontologies (ER-models) have been considered to be only an internal tool
of the system designers, and there was no stimulus for their wider appreciation. But in
the case of Semantic Web, the situation changes fundamentally – namely, the
development of the domain ontologies becomes the first and foremost step for any
Semantic Web application. Moreover, the new requirement for these domain ontologies
is that they must be understandable not only by the programmers, but also by the end-
users – i.e. they must match the commonly used domain terminology very closely.

According to current understanding, ontologies are the only means for the domain
specialists to agree on the common comprehension about the domain. Already in the
“pre-ontology era”, the daily needs have required to take extra steps for establishing of
such “common comprehension” about some essential domains – for example, in Latvia
there are laws describing the structure of the most essential national registries, like
Citizen register, Enterprise register, Transport register, Land register and others.
Among other things, these laws describe the exact items (entities), which shall be
stored in each register, and sometimes also relations between these registers. Only a
minor step was missing, before the requirements for these registers would have been
defined by the means of an ontology.

On the way to “Semantic Latvia”, our first recommendation to the government of
Latvia would be to develop formal ontologies for the main national registers (Citizen
register, Enterprise register, Transport register, Land register), as they are forming the
core of the concepts essential for the rest of public and business applications. We
believe that by such initiative, government would stimulate also private sector to start
developing formal ontologies for other areas, like consumer services, health services,
transportation, trade, etc. which could eventually all integrate into the joint “Semantic
Latvia”. The development of precise domain ontologies and their “approval by law” (so
that everyone would to stick to them) is the single most fundamental step towards
“Semantic Latvia”. In our view, the “ontology designer” profession has to become as
important as the profession of programmer or lawyer today (who both presently
produce complex computer-code or complex contracts/laws for people to obey).
Strictly speaking here we are not original – similar national ontology development
projects have been started already in USA [4] and Finland [5].

1.1. Ontology Management Infrastructure

The key advantage of conforming to W3C Semantic Web standards and particularly to
Web Ontology Language (OWL) [6] (see also RDF [7]) is the eventual opportunity to
integrate multiple ontologies and their namespaces into the “global Semantic Web”, as
well as the possibility to apply an ever growing arsenal of powerful tools being
developed for handling of OWL ontologies. For OWL there have been defined three
subsequent sublanguages: OWL Full, OWL DL and OWL Lite with decreasing
expressivity. For OWL DL and OWL Lite the strict semantics rooted in Description
Logic is defined and implemented in the form of powerful automated reasoners (“OWL
DL ontology debuggers”), such as RacerPro, Fact++ and Pellet [8]. The “Semantic
Latvia” ontologies preferably must be defined within OWL Lite; OWL DL should be
used with care due to increased debugging and reasoning complexity. OWL Full shall
not be used at all, as its semantics is not formalized.

Besides development of the ontologies themselves, on the national level must be
established also the ontology management infrastructure – a national ontology portal
providing a reliable access to the approved and current versions of the national
ontologies (Fig.1.)

Unlike in the ad-hoc ontology portals [17], the national ontology portal must also
standardize the namespaces used by the ontologies and ensure that only nationally
approved namespaces are used by the nationally approved ontologies. Our proposed
solution to the namespace standardization issue is following: a) establish a well-known
domain name for the national ontology portal (e.g. http://semanticlatvia.gov.lv) serving
also as the root for the namespaces of all approved “Semantic Latvia” ontologies; b)

Figure 1. The national approved ontology portal along with the list of trusted

RDF data sources (this web page and addresses are simulated).

additionally certify essential international namespace roots, such as W3C namespace
http://www.w3.org, which may also be used by the approved national ontologies; c) all
national resource URIs used by the national ontologies must have the standard format
“http://semanticlatvia.gov.lv/ont/ontologyname.owl#localname”, where
“ontologyname.owl” is one of the approved national ontologies stored on the ontology
portal and containing the definition of the mentioned resource “localname” (class or
property), including its natural language definition under the pre-defined “label”
property. For example, if the resource under consideration is concept “boat”
(localname), which is defined in the approved ontology “transport.owl”
(ontologyname.owl), stored at URL “http://semanticlatvia.gov.lv/ont/transport.owl”,
then the “transport.owl” ontology must contain at least the following information:

<owl:Class rdf:ID=
 "http://semanticlatvia.gov.lv/ont/transport.owl#boat">
 <rdfs:comment> "an open vehicle for traveling on water"
</rdfs:comment> </owl:Class>

Finally, besides approved ontologies and namespaces, the Semantic Latvia

ontology portal also must contain the list of trusted servers, where RDF/OWL data
(class instances of approved ontologies) can be found. Such list will typically include
the web servers of national registers, such as Population register, Enterprise register,
Transport register etc. It is assumed (theoretically) that all these registers regularly post
all their contents in the RDF/OWL data format according to the approved ontologies on
their web server, so that interested parties can retrieve it. In practice this step would
need to be optimized in a number of ways – besides more advanced security, it would
be also more practical to store all this RDF/OWL data in the centralized “national”
read-only in-memory data store (discussed in the section 3), and only incremental
changes from various registers would need to be fed into such centralized read-only
RDF/OWL store.

To set the precedent, one of the first steps could be creating of such ontology
portal infrastructure for the “Semantic University”.

2. Extraction of Information according to Fixed Ontologies

There is a massive amount of tools [12,13,14] and literature [10,11] about manual,
semi-automatic or fully-automatic extraction of RDF data (RDF triples according to
public domain ontologies) from heterogeneous, distributed data sources, such as
HTML pages, legacy documents, news articles, etc. If the data source, from which
RDF/OWL data needs to be extracted, has been created without knowledge of the
target ontology, then such extraction is very difficult and complex task. It is
particularly complex, if the data source is a natural language text. In our view these
technologies currently are too immature for infrastructural use – despite enthusiasm of
some early adaptors [14], this is still the key stumbling block for the “canonical”
Semantic Web, envisioned as a mere extension (annotation) of the traditional web. Our
proposal for “Semantic Latvia” is different and is based on the following two ideas.

The first idea is borrowed from Google, which effectively crawls and copies the
entire global web content to its own distributed and indexed data store to ensure fast
access required for processing complex multi-word queries [18]. In case of Semantic
Web content, fast RDF/OWL data retrieval is even more crucial due to higher
complexity of the typical Semantic Web inquiries or automatic reasoning tasks. To deal
with this problem, fast in-memory RDF data stores will be discussed in the following
sections.

The second idea is that domain ontologies must be approved and made publicly
available before the domain information systems, including domain-specific textual
web content, are created (according to these approved ontologies and their proper
namespaces). In this case RDF/OWL data extraction from the domain information
systems and domain-specific textual web content becomes a much simpler task. In the
ideal case, the information system designers themselves should be able to implement
the RDF/OWL data export according to the approved domain ontologies, so we will
not elaborate this further. Handling of domain-specific textual web content according to
the approved domain ontologies is slightly trickier and is discussed below.

To our surprise, presently there is very limited research [9] and tool support for
authoring of domain-specific text documents (web pages, other document formats) with
RDF/OWL data embedded (or linked) according to pre-defined domain ontologies.
Curriculum Vitae, List of Publications, Medical examination results, Office opening
hours, Product catalogues, etc. are examples of text documents (web pages), which
could easily be generated semi-automatically from pre-defined OWL ontologies via
simple ontology-driven form-based data input interface. Adobe XMP (eXtensible
Metadata Platform) [15] for embedding RDF/OWL data into PDF documents and other
media files is one of the very few industrial developments in this direction.

We will illustrate our proposal by the example of creating a web page containing a
List of Publications. Of course, we can create such web page directly in HTML without
any tools or ontologies (as most of us still do). But in such case extracting the
RDF/OWL data from such List of Publications would be a difficult task (addressed by
so called “scrappers”), especially in the light of punctuation variations used by various
authors. According to our “Semantic Latvia” vision, the List of Publications web page

Figure 2. Graphic representation of
the “papers.owl” ontology

Figure 3. Hypothetical application for creating
domain-specific web pages and corresponding

RDF-data according to the given domain ontology

could have been created by a simple universal application shown in Fig.3 in following
3 steps:

1. Go to the “Semantic Latvia” web portal and find an approved ontology for lists of

publications, e.g. http://SemanticLatvia.gov.lv/ont/papers.owl. Such example
ontology is depicted graphically in Fig.2.

2. By loading this ontology into the application shown in Fig.3, the application
automatically tunes itself and displays the data input form with the fields and
options permitted by the selected ontology. User enters data into the relevant input
form fields; application might prompt the already entered Person or Enterprise
names (with URI) for the Author and Publisher fields

3. When all data is entered, use buttons “Save HTML” to generate the HTML version
“mylist.html” of the list of publications (formatting style-sheet might be applied
for nicer layout), and “Save RDF” to generate the RDF version “mylist.rdf”
containing the same information in machine-readable format.

Both files shall be placed on the author’s web server – the “mylist.html” file will

be viewed by humans, while “mylist.rdf” file will be used by Semantic Web
applications, such as Swoogle [16] (imitating Google by crawling and collecting .rdf
files on the web) or those described in the following sections. Note that W3C has not
defined a standard for linking the two files “mylist.html” and “mylist.rdf” together,
which sometimes causes confusion and hinders reliable navigation between the human-
readable and machine-readable formats. Nevertheless, following syntax variations are
commonly used to provide a link from the HTML file to its corresponding RDF data
file:

<head>
<title>My Document</title>
<meta name="OWL" content="author.rdf">
<link rel="meta" type="application/rdf+xml" href="author.rdf"/>
<link rel="alternate" type="application/owl+xml" title="OWL" href="author.rdf" />
<link rel="alternate" type="application/rdf+xml" title="RDF" href="author.rdf" />
</head>

The proposed 3-step process for creating machine-readable Semantic Web content,

in our view, is simple enough to be handled by “a manager, who never took Comp Sci
101”, as was envisioned in [1].

Strictly speaking, the proposed 3-step process is not entirely original – a similar
approach is described also in [9], where additional means for input-form style-sheet
control in medical domain are discussed. We will return to this subject in the section 4,
where MDA and model transformations will be used to facilitate interaction with the
Semantic Web RDF/OWL data.

3. RDF/OWL Data Stores

Once the RDF data is extracted, the next crucial issue is how to store it for efficient
retrieval by agents, reasoners, or other applications. Awareness about significance of
this issue is growing – from one related paper in the 3rd International Semantic Web
Conference (ISWC 2004) to already four related papers [19,20,21,22] in the 4th
International Semantic Web Conference (ISWC 2005). Various RDF data storage
architectures are being proposed.

Storing of RDF data in a centralized relational database is studied in [21], where
authors have tested and compared performance of 5 different relational database
representations of RDF data: schema-aware (with explicit or implicit storage of
subsumption relationships), schema-oblivious (with or without identifiers to represent
resources) and the hybrid of both. Their conclusions were drawn from the experiments
with the taxonomic queries: a) the hybrid representation is the most efficient, b)
schema-aware representations exhibit better overall performance than the schema-
oblivious ones, c) the schema-oblivious representation with identifiers exhibits the
worst overall performance.

Meanwhile for more complex Semantic Web tasks, such as semantic association
discovery, according to [20], feasible performance can be achieved only by: a) storing
all RDF data in the main memory; b) query programming through the low-level API
„suitable to operate directly on the internal graph representation structures”.
Consequently, authors of [20] have developed a specialized in-memory RDF data store
BRAHMS and have demonstrated its superiority compared to 3 other in-memory RDF
data storage systems.

In reality, it is hard to compare different RDF data stores without bias, because
they use dissimilar API, optimized for different types of tasks. Currently there are no
any standards for the RDF data store low-level API (note that traditional RDF query
languages like SPARQL are too high-level and thus inefficient). Our general
conclusion is that the high-performance in-memory RFD data store issue is not yet
adequately resolved.

In the next section we will describe our own in-memory RDF data store, code
named “OUR” for the rest of the paper. This data-store is adequate for the core
registers of a small country like Latvia. For example, Citizen and Enterprise registers
are among the largest ones, but still contain only about 4 GBytes of raw information.
At the same time the 64bit computer architecture today allows to have and efficiently
use tens of GBytes of the main memory. This means that in-memory data stores are
completely applicable already today, especially for optimizing read-only information
retrieval tasks, where potential in-memory data loss upon sudden equipment failure is
not an issue. Additionally, it shall be noted that in-memory it is necessary to store only
the parts of information, which are structured and therefore meaningfully “searchable”
– the rest of information, like photos, plans of buildings, copies of documents and like
can be stored externally and referenced to by URLs or other means. Such distinction

could be coded already in the ontology itself by adding property “unstructured” to
classes representing such unstructured entities.

3.1. OUR Approach – Metamodel-Based In-memory Data Store

For RDF data storage and efficient retrieval we propose to use metamodel-based in-
memory data store. Such stores allow RDF data to be stored internally according to an
arbitrary user-defined metamodel (domain ontology). Such flexibility gives option to
tune the data store to the specific domain ontology for optimal storage and retrieval of
corresponding RDF data. Alternatively, the data store can be tuned to the more generic
RDF or OWL metamodel (described in section 5), in which case it can store arbitrary
RDF triples or arbitrary OWL ontologies, at the expense of slightly lower performance.
These alternatives correspond to the schema-aware representations and schema-
oblivious representations mentioned in [21]. The schema-aware representation has at
least two advantages: a) higher performance, because the advance knowledge of the
data structure considerably reduces the search-space; b) more natural queries with
fewer parameters, formulated in the terms of the domain ontology.

Selection of the data store API is not easy – it must include only functions having
efficient implementations, and at the same time these functions must closely cover
typical Semantic Web tasks.

API of our data store is implemented as a function library. This library offers: a) a
system of low-level data retrieval functions that is complete for low-level data query
programming (as required for Semantic Web data stores in [20]); b) a selected set of
more complicated widely usable data searching functions. By means of a sophisticated
indexing mechanism, also these more complicated functions are efficiently
implemented.

Our API includes three groups of functions:
1. Meta-model management - about 40 functions for creating, modifying, deleting

of classes, attributes and associations, querying about their properties, class inheritance
etc.:

• CreateClass (class_name): class_id; Creates class and returns class identifier.
• CreateAttribute (class_id, attribute_name, base_type): attribute id; Creates a

class attribute, returns attribute identifier (base types: boolean, integer, string
etc.)

• CreateAssociation (association_name, inverse_association_name,
start_class_id, end_class_id, start_multiplicity, end_multiplicity):
association_id; Creates association and the corresponding inverse association
(as types) between two classes, returns association identifier.

• ConnectSubclass (subclass_id, superclass_id); Supports multiple inheritance.
• GetClassIdByName (class_name): class_id;
• GetAttributeIdByName (class_id, attribute_name): attribute_id;
• GetAssociationIdByName (start_class_id, association_name): association_id;
• …
2. Instance management - about 30 functions for creating instances, assigning

attribute values, creating associations between instances, modifying and deleting,
querying about instance attributes and associations, etc.:

• CreateInstance (class_id): instance_id; Creates a class instance, returns
identifier.

• AddAttributeValue (instance_id, attribute_id, attribute_value); Assigns an
attribute value to an instance.

• AddAssociation (start_instance_id, association_id, end_instance_id); Links
two instances.

• GetInstanceCount (class_id): integer; Returns class instance count.
• GetInstance (class_id, index): instance_id; Returns identifier of i-th class

instance.
• GetAttributeValue (instance_id, attribute_id): attribute_value; Returns

attribute value.
• GetAssociationCount (instance_id, association_id): integer; Returns count of

instances connected via association_id to instance_id.
• GetAssociationPartner (instance_id, association_id, index): instance_id;

Returns identifier of the i-th connected instance.
• …
3. Search functions are implemented as iterators. The search process starts with

specification of its scope:
• CreateIterator (parameter_list): iterator_id; Creates an iterator, returns

iterator identifier. The search scope is specified by the parameter list (see
examples below).

The following function iteratively extracts the next portion of the required instances:
• GetNextInstances (iterator_id, instance_count): instance_id_list; Returns

identifier list of the required number of instances. This kind of flexibility may
be necessary for „visiting” web-agents.

At the end, the search process must be stopped:
• DeleteIterator (iterator_id); Releases resources used for the iteration process.

The following search processes are efficiently implemented and included in our API:
• CreateIterator (class_id); Initiates scanning of all instances of a given class.
• CreateIterator (instance_id, association_id, target_class_id); Initiates

scanning of all instances associated with a given instance via given association.
• CreateIterator (instance_id, association_id1, …, association_idn,

target_class_id); Initiates scanning of all instances associated with a given
instance via given chain of connected associations. Length of association
chain is not limited.

• CreateIterator (instance_id1, association_id11, …, association_id1m,
instance_id2, association_id21, …, association_id2n, …, target_class_id);
Initiates scanning of all instances associated with several given instances via
given chains of connected association (conjunction). Length of association
chains and number of conjunction members is not limited.

• CreateIterator (class_id, attribute_id, attribute_value); Initiates scanning of
all instances of a given class having a given attribute value.

• CreateIterator (class_id, attribute_id1, attribute_value1, …, attribute_idn,
attribute_value_n); Initiates scanning of all instances of a given type having
several given attribute values (conjunction). Number of attribute values is not
limited.

These search processes form the basis on which more complex queries can be
constructed. Web-agent support for searching in distributed in-memory data stores is
also under development.

Figure 4. University Ontology as an OWL graph (simplified)

Figure 5. University Ontology as a UML class diagram

The described metamodel-based in-memory data store has been developed over
many years as part of high-performance graphic modeling tools Exigen Business
Modeler (EBM) [24] and GRADE [25,26]. The key requirement of graphical modeling
tools was fast retrieval of data necessary for displaying various kinds of tree-like views.
The above mentioned search processes were heavily optimized to support this
requirement. In case of RDF, the very same search functions can be efficiently used for
graph-like queries such as adjacency (retrieving 1-neighborhood or k-neighborhood),
connectedness and pattern matching.

In what follows we compare the performance of or in-memory data store with that
of the Sesame tool [23] for RDF data storing and querying, version 1.2.3. Note that the
data store BRAHMS that has been reported to have the best query times in [20] has not
yet been made available at the time of this writing. Sesame has come out the second
best according to [20].

The experiment performed was a relatively simple, yet not too simple query: “for
all instances of a given class X, look at all related instances in class Y and calculate the
sum of attribute values A of those Y instances found, which are further related to an
instance in class Z that satisfies a property P.” The experiment was performed on the
data stores containing 20 thousand instances of class X, each related with 100 instances
of Y, 2 million instances of Y altogether, on a computer with Intel 3.2GHz dual core
processor and 2GB memory. The times for calculating the requested sum was as
follows:

Sesame, with single query 6546 msec
Sesame, access through API 3875 msec
OUR in-memory data store 1109 msec

As it is possible to observe, on this example OUR data store gives the search speed
improvement about 3.5 times. The experiment also confirms that using a low level API
in performing search tasks is more efficient than using high-level queries. These are
only preliminary encouraging results and more detailed comparison is still necessary.

3.2. RDF/OWL Data Storing Options in OUR In-memory Data Store

As mentioned, our data store can store RDF/OWL data in two different ways:
• according to the given ontology (schema-aware way)
• according to the OWL metamodel (schema-oblivious way).

Figure 6. OWL Lite metamodel

Figure 7. University Ontology as an instance of OWL metamodel

Now let us go into more details. Let us assume that we have a (very simplified)
University Ontology presented in Fig. 4. This figure presents the ontology as an OWL
graph (d denotes domain and r denotes range). Fig. 5 presents the same ontology as
UML class diagram.

This class diagram can be treated as a domain metamodel and be used to configure
OUR in-memory data store in the schema-aware mode. In this case the data store will
keep the data according to this metamodel and its API can be used according to the
metamodel (e.g., a following function invocation CreateInstance (student_id) , where
student_id is the identifier for the class Student, will be valid).

However, on the basis of ontology for one specific domain it is difficult to define
universal tools, which would be usable for any ontology (see the next section).
Therefore in the general case it is better to store the data according to a universal
metamodel, where any ontology can be embedded. Namely, the OWL metamodel itself
serves this purpose. OMG has published the Request for proposals (RFP) for the
Ontology Definition Metamodel in 2003. Currently the OMG candidate for Ontology
Definition Metamodel is available [3]. An interesting independent OWL metamodel is
given in [27]. For our goals it is very important to select such OWL metamodel, where
an instance of this metamodel corresponding to a given ontology would be visually as
close as possible to the graph of the ontology itself. Fig. 6 shows our proposed
metamodel for OWL Lite (in this paper we limit ourselves to OWL Lite, and without
Restrictions and Containers). We use [3] as the basis for this metamodel, only the
metamodel part describing property instances is modified according to [27].

The ontology in Fig.4 can now be represented as an instance of this metamodel,
Fig. 7 shows this form. Due to the adequate choice of metamodel, Fig. 4. and 7. are
quite similar.

CourseStudentDepartment

String

Lecturer

Integer

code

studName

takes teaches

age

depName

affiliated

lectName
position

CompSc
Math

V

Professor
AssocProf

V
>60

How many

Figure 8. Window contents of the DEMO tool showing the University Ontology

Now OUR in-memory data store can be configured according to the accepted
OWL metamodel. In this case the data store will keep OWL data according this
metamodel, in a uniform way for any domain ontology. This will ensure a very flexible
usage of this store. However, in this case more class, attribute and association instances
are required to represent the same data. Therefore we cannot achieve the same
performance using the universal metamodel as that when the data store is configured to
a specific domain ontology. However, due to the appropriate choice of API for OUR
data store, this slowdown is not larger than 6-fold.

4. Languages and Tools for Semantic Web Endusers

One of the most important problems having no satisfactory solution in the area of
Semantic Web is an easy usable query language for end users. This is due to the fact
that in the area of Semantic Web the types of queries cannot be standardized
beforehand, as it is possible in traditional information systems. For example, in the
classical Berners-Lee example [1] the way Lucy instructs her Semantic Web agent is
left open. One of the more or less popular ideas is to use Structured English to
formulate queries [28], but it is very far from a solution satisfactory in practice along
this direction.

Apparently, the most natural way how to solve this problem is to build special
(domain specific) languages, and, in our opinion, preference should be given to
graphical languages which could be understood by the end user without special training.

Just to give a feeling how such end-user query language could look like, we briefly
sketch an example of a graphical query language, named DEMO. Fig. 8 shows a sketch
of window contents of a would-be query tool supporting this language. This diagram
window shows OWL classes and properties of the University Ontology (defined in
section 3) in the form of a graph (a simple class diagram). The user can select some
constraint classes, e.g., Department, Lecturer, … and specify which instances of these
classes are of interest. For example, for Department these instances of interest are
CmpSC and Math. For properties with integer values the corresponding bounds can be
specified. Then the user can select a query class, e.g., Student and specify the How
many option (another alternative would be List all). In the result the tool will find how
many instances of Student satisfy the query conditions. The query presented in Fig. 8

informally would read this way: "How many students there are in CompSc or Math
departments, for whom some courses are taught by Professors over sixty?"

The tool supporting DEMO has to build a diagram like the one in Fig. 8 from the
corresponding ontology definition. The challenge is how to implement such a tool with
minimum effort - due to the fact that functional requirements for such a tool would be
quite unstable and additional wishes likely would spring up during the use.

Certainly, such a tool can be implemented in any standard OOPL, e.g., C++, using
the Repository API, but such an implementation would be very expensive, especially
the support of diagram graphics. In the area of modeling tool building a new idea has
appeared, namely, generic metamodel based modeling tools [29,30]. A certain
contribution to the development of this idea has been made also by the authors of this
paper [31,32]. Currently the authors of this paper are developing a much more
innovative approach, namely on a Tool Framework based on model transformations
and their efficient implementation (a similar approach has been recently proposed also
in [33]). Use of model transformations in a very flexible way is the backbone of this
new framework. On the way to this framework the authors have developed a model
transformation language MOLA [34-39], which is well suited for tasks arising there (as
it is well known, model transformation languages form the core of the MDA approach,
see, e.g., [40,41]). Below the idea of Tool Framework will be briefly sketched on the
basis of a DEMO tool.

The basic idea of our framework relies on two kinds of metamodels. One of them
is the domain metamodel and other the presentation metamodel. In our DEMO tool the
OWL metamodel (shown already in Fig. 6) will serve as the domain metamodel. Now
let us look at some details of the presentation metamodel. This metamodel defines the
type of visual presentation used in a window, this time a graphical one. For the DEMO
tool and many similar simple diagrams the directed graph is a very adequate
presentation metamodel. Certainly, both nodes and edges can contain text
Compartments. In addition, the presentation metamodel contains also Events – the
possible user actions on visual elements. Fig. 9. shows both the domain metamodel
(yellow classes) and the presentation metamodel (light green classes). The DEMO tool
window example (Fig. 8) actually is an instance of this metamodel (with events not
shown for the sake of simplicity).

The next essential component of our Tool Framework is a presentation engine
library, one for each presentation metamodel. The presentation engine is a program
which visualizes the instances of the given metamodel and reacts to user actions
specified in the metamodel. In our example the engine for visualizing a directed graph
is used and we assume it to be sophisticated enough to generate automatically a
readable graph layout. The reaction on an event, such as rightclick on a node, is to set
the appropriate attribute (e.g., selected) of the node to true.

Now we can return to the structure of our DEMO tool and show how it relies on
the Tool Framework. The first task the tool has to do is to find in an OWL model all
classes and object properties and to present in the form similar to Fig. 8. This is done in
two steps. At first the relevant information is extracted from the OWL model and then
stored according to the presentation metamodel. The simplest way to do this task is in a
model transformation language.

Then the presentation engine for directed graphs is invoked, which actually
displays the nodes and edges with text compartments in a graph window and starts to
listen to user actions. When user selects a class node for the query condition, the engine
stores the selection in the node and invokes another model transformation program,

LeftClick RightClick

TypedLiteral
value : StringObjectLink

Diagram
name : String

LineStyle
color : Integer
w idth : Integer
name : String

OWLDatatypeProperty

OWLClass
ns : String
name : String

DatatypeLink

OWLDatatype
ns : String
name : String

ButtonOK

OWLProperty
ns : String
name : String
functional : Boolean

NodeStyle
color : Integer
lineWidth : Integer
name : String
shape : Shape

Line
selected : Boolean

Event
name : String

Node
selected : Boolean

Compartment
value : String
position : LinePos[0..1]

<enumeration>
LinePos

startUp
startDow n
endUp
endDow n

<enumeration>
Shape

rectangle
roundedrect
ellipse

OWLObjectProperty
inverseFunctional : Boolean
symmetric : Boolean
transitive : Boolean

Individual

0..1
inverseOf

0..1

*
subject
1

*
object1

ow ner
1

nodes *

*

subclassOf
*

1

style *

*

equivalentProperty
*

*

subPropertyOf
*

*

equivalentClass
*

* object
1

*domain

1

*
end 1

ow ner
1

lines *
0..1lineComp

* order=true

0..1 comparts
* order=true

*

event 0..1

1

style *

*

start1

0..1

event 0..1

map 0..1

present
0..1

map 0..1

present0..1

dmap
0..1

present
0..1

*

range1

*

range
1

*

type1

*

type1

*

type1

*

type1

*

subject 1

*

sameAs
*

Figure 9. The extended OWL metamodel

which transfers the selection to the domain (OWL) model. The query result node is
processed similarly. Finally, when user presses the OK button, the transformation is
invoked, which evaluates the query and presents the result (via the presentation engine
for simple dialogs).

Our current experience shows that a tool like DEMO in this way can be built with
10 times less effort than required for implementation directly in C++. Certainly, this
speedup is under the condition that the presentation engine library for most used
presentation metamodels is pre-built. This library is universal – it can be used for any
tool within the Tool Framework, and it has to be built only once. Currently such a
library is under development.

5. Conclusion

Following is the summary of the proposed Semantic Latvia vision:
1. It is necessary to develop and approve formal ontologies for the domains, which

will join the Semantic Latvia. (Most of the national registers are very close to that,
as their structure is already described and approved by the law.)

2. It is necessary to create the national approved ontologies portal, which should also
list the web servers containing trusted RDF/OWL data corresponding to these
ontologies.

3. The existing information systems and registers, which would like to join Semantic
Latvia, must define their ontologies and have them approved and included into the
national ontology portal. They also must ensure regular export of their data into the
RDF/OWL format according to the approved ontology, and place this data on the
trusted web server. (Internally such registers may continue to use a different
architecture based on the relational database, but we believe that getting their
ontology approved will be a good stimulus to eventually migrate to the RDF data-
store architecture also internally.)

4. It is possible to publish RDF/OWL data according to approved ontologies also in
the format of the regular textual web pages, complemented with their OWL/RDF
data pages (as described in the section 2). For such textually originated RDF/OWL
data to be part of Semantic Latvia, it must be published on a trusted web server.

5. Similar to Google, Semantic Latvia agency must regularly collect all RDF/OWL
data from the trusted web servers and store in its own ultra-fast in-memory
RDF/OWL data store (or stores).

6. Semantic Latvia agency can grant controlled access to the parts of its in-memory
RDF/OWL data to the wide range of end-users, based on their access rights. Such
access-rights could be encoded already in the domain ontologies themselves via a
special “access-rights” property

7. End-users must be equipped with the new generation of Semantic Web browsers,
similar to the tool described in the section 4. The purpose of such tool is to enable
end-users to enter complex Semantic Web queries in the most intuitive format
possible, which we believe, is the illustrated graphic format.

8. In this paper we have discussed only the information retrieval aspect of the
Semantic Web. This gives possibility to retrieve information about availability of
the complex resources, like a free timeslot in the therapist schedule in the Tim
Berners-Lee example. Meanwhile there is a related issue, outside of the described
Semantic Latvia vision, about how to automatically reserve the appointment with
the found therapist. This would be an interesting issue to explore next.

References

[1] Tim Berners-Lee, James Hendler and Ora Lassila. The Semantic Web. Scientific American, May 2001.
[2] H.Alani et al. Towards a Killer App for the Semantic Web. ISWC 2005, LNCS 3729, pp.829-843, 2005.
[3] IBM, Sandpiper Software. Ontology Definition Metamodel. Third Revised Submission to OMG/RFP,

ad/2003-03-40, August 2005. URL: http://www/omg.org/docs/ad/05-08-01.pdf
[4] NCOR (National Center for Ontological Research), URL: http://ncor.us
[5] E. Hyvonen, A. Valo et al. Creating a National Content and Service Infrastructure for the Finnish

Semantic Web. Poster & Demonstration Proceedings, ISWC2005, Galway, Ireland, 2005.
[6] Web Ontology Language (OWL). W3C, 2004. URL: http//www.w3.org/2004/OWL/
[7] Resource Description Language (RDF). W3C, 2004. URL: http://www.w3.org/RDF/
[8] Hai Wang, Matthew Horridge, Alan Rector, Nick Drummond, and Julian Seidenberg. Debugging

OWL-DL Ontologies: A Heuristic Approach. ISWC 2005, LNCS 3729, pp. 745–757, 2005.
[9] V.Kashyap et.al. Definitions Management: A Semantics-Based Approach for Clinical Documentation

in Healthcare Delivery. ISWC 2005, LNCS 3729, pp. 887-901, 2005.
[10] Fabian Abel, Robert Baumgartner, Adrian Brooks, Christian Enzi, Georg Gottlob, Nicola Henze,

Marcus Herzog, Matthias Kriesell, Wolfgang Nejdl, Kai Tomaschewski. The Personal Publication
Reader. ISWC 2005, LNCS 3729, pp. 1050–1053, 2005.

[11] V.Uren et.al. Semantic annotation for knowledge management: Requirements and a survey of the state
of the art. Journal of Web Semantics, Elsevier, Vol 4 (2005), p.14-28.

[12] http://cerebra.com/
[13] http://www.landcglobal.com

[14] David Huynh, Stefano Mazzocchi, and David Karger. Piggy Bank: Experience the Semantic Web
Inside Your Web Browser. ISWC 2005, LNCS 3729, pp. 413-430, 2005.

[15] www.adobe.com/products/xmp/pdfs/whitepaper.pdf
[16] http://swoogle.umbc.edu/
[17] http://www.schemaweb.info
[18] http://www.googleguide.com/google_works.html
[19] Raul Garcia-Castro, Asuncion Gomez-Perez. Guidelines for Evaluating the Performance of Ontology

Management APIs. ISWC 2005, LNCS 3729, pp.277-292.
[20] Maciej Janik, Krzysztof Kochut. BRAHMS: A workBench RDF store And High performance Memory

System for Semantic Association Discovery. ISWC 2005, LNCS 3729, pp.431-445, 2005.
[21] Yannis Theoharis, Vassilis Christophides, Grigoris Karvounarakis. Benchmarking Database

Representations of RDF/S Stores. ISWC 2005, LNCS 3729, pp.685-701.
[22] Sui-Yu Wang, Yuanbo Guo, Abir Qasem, Jeff Heflin. Rapid Benchmarking for Semantic Web

Knowledge Base Systems. ISWC 2005, LNCS 3729, pp.745-757.
[23] J.Broekstra, A.Kampman, F.v.Harmelan. Sesame: A Generic Architecture for Storing and Querying

RDF and RDF Schema. Proc. International Semantic Web Conference, Sardinia, Italy, 2002.
[24] A.Kalnins, K.Podnieks, A.Zarins, E.Celms, J.Barzdins. Editor Definition Language and its

Implementation. LNCS 2247, pp.530-537, 2001.
[25] J.Barzdins, I.Etmane, A.Kalnins, K.Podnieks. Towards Integrated Computer Aided Systems and

Software Engineering Tool for Information Systems Design. Proc. 2nd International Workshop on
Advances in Databases and Information Systems (ADBIS'95), Springer, pp. 3-11, 1996.

[26] J.Barzdins, A.Kalnins, K.Podnieks. MiniGRADE – A Tool for Conceptual Modeling by Class
Diagrams. Proc. 18th International Conference on Conceptual Modeling, LNCS 1728, pp. 11-12, 1999.

[27] S.Brockmans, R.Volz, A.Eberhart, P.Loffer. Visual Modeling of OWL DL Ontologies Using UML.
LNCS 3298, pp.198-213, 2004.

[28] A.Bernstein, E.Kaufmann, A.Gohring, C.Kiefer. Querying Ontologies: A Controlled English Interface
for End-Users. ISWC 2005, LNCS 3729, pp.112-126, 2005. .

[29] A.Ledeczi, M.Maroti, A.Bakay, G.Karsai, J.Garrett, C.Thomason, G.Nordstrom, J.Sprinkle, P.Volgyesi.
The Generic Modeling Environment, Workshop on Intelligent Signal Processing, Budapest, Hungary,
May 2001.

[30] MetaEdit resources. URL: http://www.metacase.com/papers/index.html
[31] A.Kalnins, J.Barzdins, E.Celms, L.Lace, M.Opmanis, K.Podnieks, A.Zarins. The First Step Towards

Generic Modelling Tool. Proceedings of Baltic DB&IS 2002, Tallinn, 2002, v. 2, pp. 167-180.
[32] E. Celms, A. Kalnins, L. Lace. Diagram definition facilities based on metamodel mappings. Proc. 18th

International Conference, OOPSLA’2003 (Workshop on Domain-Specific Modeling), Anaheim,
California, USA, October 2003, pp. 23-32.

[33] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer. Generation of visual editors as eclipse plug-ins. Proc.
20th IEEE/ACM International Conference on Automated Software Engineering, IEEE Computer
Society, Long Beach, California, USA, 2005.

[34] A.Kalnins, J.Barzdins, E.Celms. Model Transformation Language MOLA. Proc. MDAFA 2004
(Model-Driven Architecture: Foundations and Applications 2004), Linkoeping, Sweden, June 2004.
pp.14-28.

[35] A.Kalnins, J.Barzdins, E.Celms. Model Transformation Language MOLA: Extended Patterns. Selected
papers from the 6th International Baltic Conference DB&IS’2004, IOS Press, FAIA 118, pp. 169-184,
2005.

[36] A.Kalnins, J. Barzdins, E. Celms. Efficiency Problems in MOLA Implementation. 19th International
Conference, OOPSLA’2004 (Workshop “Best Practices for Model-Driven Software Development”),
Vancouver, Canada, October 2004. URL: http://www.softmetaware.com/oopsla2004/mdsd-
workshop.html

[37] A. Kalnins, J. Barzdins, E. Celms. MOLA Language: Methodology Sketch. Proc. EWMDA-2,
Canterbury, England, pp.194-203, 2004.

[38] A.Kalnins, E. Celms, A. Sostaks. Tool support for MOLA. GPCE'05. Workshop on Graph and Model
Transformation (GraMoT), Tallinn, Estonia, September 2005, pp. 162-173.

[39] A.Kalnins, E.Celms, A.Sostaks. Model Transformation Approach Based on MOLA. ACM/IEEE 8th
International Conference on Model Driven Engineering Languages and Systems, Workshop: Model
Transformations in Practice (MTIP), Montego Bay, Jamaica, October 2005, 25p. URL:
http://sosym.dcs.kcl.ac.uk/events/mtip/programme.html

[40] Object Management Group Request for Proposal: MOF 2.0 Query / Views / Transformations RFP.
URL: http://www.omg.org/cgi-bin/apps/doc?ad/02-04-10.pdf

[41] Object Management Group MOF QVT Final Adopted Specification. URL: http://www.omg.org/cgi-
bin/apps/doc?ptc/05-11-01.pdf

