
Graphical Query Language as SPARQL Frontend

Guntis Barzdins1, Sergejs Rikacovs
1
, Martins Zviedris

1

1 Institute of Mathematics and Computer Science, University of Latvia, Raina bulv. 29,

Riga LV-1459, Latvia

Guntis@latnet.lv, Sergejs.Rikacovs@lumii.lv, Martins.Zviedris@lumii.lv

Abstract. It is well known that end-users have problems to write even simple

SQL queries. The new SPARQL query language for RDF databases is a step in

the right direction, but is still not suitable for end-users. This lead us to creating

a more convenient approach in which end-users could retrieve structured data

from the database through a graphical query language named GQL. GQL

graphical query language is based on OWL ontology language and SPARQL

query language for RDF data. GQL visualization format is based on UML

graphical language. To achieve interoperability between all these techniques, a

true subset approach did not work – minor modifications were required to

achieve a functional solution. The proposed approach is applicable also to

querying data from the legacy relational databases through database export to

OWL/RDF format.

Keywords: Ontology, Database, Graphical query language

1 Introduction

In this paper we propose a graphical query language frontend for SPARQL that end-

users can use to create simple or even rather complex queries. The perceived end-user

simplicity of the proposed approach is based on tight integration of selected features

of OWL, SPARQL and UML.

As we know OWL [1] is the de-facto standard for web ontology specification.

Nevertheless there are certain pragmatic situations, like performance sensitive billion

triple RDF stores, where ontologies are needed to define the database schema, but

application of standard OWL semantics is not practical [2]. The reason for the need to

departure from the standard OWL semantics is that the role of the ontology in the

pragmatic scenarios considered in this paper is to provide data validation (constraint

checking) and data explanation to user, rather than universal logic inference (enabled

by the standard OWL semantics based on the Open World Assumption and rejection

of the Unique Name Assumption).

Although a number of well-defined OWL subsets, such as OWL Lite [1], OWL

DL, OWLSIF [3], OWLPRIME [4], etc. have been around for a while, the need for

even more finely refined OWL subsets has lead towards introduction of the language

profile concept in OWL 2, along with an extensive list of predefined profiles [5].

Nevertheless, none of the existing OWL profiles provides a pragmatic OWL subset ,

which would be compatible with the following three ubiquitously used real-world

technologies:

• Provides meaningful database schema definition and data constraint

validation means,

• Can be represented by graphic UML class diagrams,

• Supported by the existing high performance billion triples RDF stores,

The only OWL 2 profile which comes close to the above goal is OWL 2 RL profile

[6]. For example, the OWL 2 RL profile ensures, that a reasoning engine only needs

to reason with individuals that occur explicitly in the data part of the ontology. The

main reason why we, nevertheless, introduce a new and mostly more limited OWL

profile is that we want to cover all three above mentioned goals, including the

compatibility with the existing high performance billion triples RDF stores.

Therefore first in this paper we describe a syntactic subset of OWL, which we will

call UML / OWL subset. The semantics of this subset will be different from the

standard OWL and will follow the more pragmatic UML semantics. Meanwhile,

preserving of OWL syntax provides convenient compatibility with numerous OWL

serialization formats as well as with the popular ontology editors such as Protégé. The

selected subset satisfies the following properties:

• It contains only a basic subset of OWL syntactic constructs, which can be

directly mapped to graphic UML class diagrams and cover the needs of the

considered use-cases (the only advanced feature included is

<<EnumeratedClass>>, which pragmatically is a widely used construct in

almost any real-world database)

• The semantics of the selected OWL constructs can be defined through

entailment rules which are supported by the existing high-performance RDF

data stores capable of operating on billions of triples

• It is possible to define a graphical user-friendly query language (a SPARQL

[7] pre-processor rooted in UML graphical notation) for this subset of OWL

(see Section 3)

The approach described in this paper has been developed based on real application

in the area of medical statistics with RDF triple-stores close to billion triples. For

space saving purposes, in this paper we demonstrate the approach on the very basic

university ontology.

2 UML / OWL Subset

The basic idea of the proposed UML / OWL subset is to use only those OWL DL

constructs that can be adequately represented with UML class diagrams. More

precisely, we use “UML profile for RDF and OWL” [8] to define constructs allowed

in the specification of ontologies. Namely, the UML / OWL subset is defined to

contain only the following stereotypes from the “UML profile for RDF and OWL”

definition:

• <<owlClass>>

• <<rdfsSubPropertyOf>>

• <<rdfsSubClassOf>>

• <<owlProperty>> along with sub-stereotypes <<objectProperty>> and

<<datatypeProperty>>

• <<equivalentClass>>

• <<equivalentProperty>>

• <<enumeratedClass>>.

The “UML profile for RDF and OWL” describes how these UML constructs map

into OWL constructs. In this way we have introduced the new UML / OWL profile

which defines both its graphic UML syntax and the traditional OWL serialization.

Fig. 1 in graphic UML format shows an ontology belonging to the introduced UML /

OWL profile (Fig. 1. uses also an additional stereotype <<inverseOf>> which is not

part of UML / OWL profile and shall be considered only as a comment; the reason

for not including <<inverseOf>> in the profile is its poor support in the existing RDF

databases). In our approach, the end-user shall use only the graphical UML format of

the ontology, while its corresponding OWL serialization should be used only for the

technical purposes when interfacing with the RDF databases.

Teacher
<<owlClass>>

Course
courseName:String

<<owlClass>>

Position
positCode:Integer
positName:String

<<enumeratedClass>>

Student
sudentID:String

<<owlClass>>

Professor
<<owlClass>>

Person
personName:String
age:Integer[0..1]

<<owlClass>>
AcademicProgram

progrName:String

<<owlClass>>

:Position
positCode=2
positName="Lecturer"

:Position
positCode=1
positName="Professor"

:Position
positCode=3
positName="Assistant"

supervises

<<objectProperty>>

<<inverseOf>>

takes <<objectProperty>>

teaches

<<objectProperty>>

reads

<<objectProperty>>

takenBy

<<objectProperty>>

<<equivalentPropery>>

<<instanceOf>>

taughtBy

<<objectProperty>>

position

<<objectProperty>>

<<equivalentClass>> enrolled

<<objectPropery>>

<<instanceOf>>

<<instanceOf>>

Fig. 1. Schema part of the simple university ontology (belonging to UML / OWL profile.)

In the context of the proposed UML / OWL subset we define two parts of the

ontology description:

• Ontology schema part contains classes, properties and relations such

as(rdfs:subclassOf, rdfs:subPropertyOf, owl:equivalentClass,

owl:equivalentProperty). A special consideration is made regarding

EnumeratedClass stereotype – the instances of the EnumeratedClass are

also considered part of ontology schema. In other words, ontology

schema includes everything shown in Figure 1. From the UML point of

view this part contains classes, attributes, associations and

corresponding relations.

• Ontology data part - is used to express simple statements about

resources by means of data values, named properties and classes,

defined in the schema part of the ontology. In UML terms this part

contains instances (objects and links) of classes and associations that

were defined in the schema part.

:Position
positCode=3
positName="Assistant"

a1:Department
departmentName="Computer Science"

st:Teacher, Student
personName="
Jassica"
age=26
studentID="stud4"

c2:Course
courseName="
Programming"

c1:Course
courseName="Math"

t1:Teacher
personName="John"
age=56

:Position
positCode=1
positName="Professor"

t2:Teacher
personName="Carl"

:Position
positCode=2
positName="Lecturer"

s2:Student
personName="Bob"
studentID="stud2"

takes

takenBy

takenBy

takes

teaches

position

Position

Position

teaches

enrolled

takes
takenBy

teaches

enrolled

worksFor

takenBy

takes

Fig. 2. Data part of the ontology schema shown in Figure 1 (belonging to UML / OWL

profile.)

The OWL specification along with “UML profile for RDF and OWL” [8] defines

several serialization formats for OWL ontologies along with mapping between these

serialization formats. Fig. 3 shows a fragment of OWL/N-TRIPLE serialization of the

ontology schema and data parts shown in Fig. 1 and 2. The shown OWL/N-TRIPLE

serialization format is crucial for interfacing with RDF triple-sores and their standard

query language SPARQL.
Position rdf:type owl:Class .
Position owl:equivalentClass _:ag0 .
_:ag0 rdf:type owl:Class.
_:ag0 owl:oneOf _:ali3 .
_:ali3 rdf:first p2 .
_:ali3 rdf:rest _:ali2 .
_:ali2 rdf:first p3 .
_:ali2 rdf:rest _:ali1 .
_:ali1 rdf:first p1 .
_:ali1 rdf:rest rdf:nil .
...
p1 rdf:type Position.
p2 rdf:type Position.
p3 rdf:type Position.
...
Student rdf:type owl:Class.
Person rdf:type owl:Class.
Student rdfs:subClassOf Person .
...
studentID rdf:type owl:DatatypeProperty.
studentID rdfs:domain Student.
studentID rdfs:range XMLSchema#integer.
...
s1 rdf:type Student .
s1 studentID "1"^^XMLSchema#integer.

Fig. 3. A fragment of OWL/N-TRIPLE serialization of the ontology schema and data parts

shown in Fig. 1. and Fig. 2.

The mapping between the graphic UML format and OWL/N-TRIPLE serialization

is generally rather straight-forward. The only exception is the <<EnumeratedClass>>

stereotype, which requires special attention in our approach. The regular OWL/N-

TRIPLE serialization of this construct uses a special oneOf construct over a set of

permitted values. Meanwhile to stick with UML interpretation of this construct, we

also need to create the actual individuals for the enumerated class and link them

through the regular instanceOf construct (which corresponds to rdf:type relation in

RDF). For the purposes of this paper we will assume that such individuals are created

for all EnumeratedClasses by some external procedure.

Due to rather limited set of features included in the UML / OWL profile, it is

possible to define its semantics through a rather short list of RDFS-like entailment

rules seen in the table below.

Table 1. RDFS-like entailment rules for UML / OWL profile.

1
uuu rdfs:subPropertyOf vvv .

vvv rdfs:subPropertyOf xxx .

obj1 uuu obj2

Obj1 xxx obj2 .

2 aaa rdfs:subPropertyOf bbb .

uuu aaa yyy .

uuu bbb yyy .

3 uuu rdfs:subClassOf xxx .

vvv rdf:type uuu .

vvv rdf:type

xxx .

4
uuu rdfs:subClassOf vvv .

vvv rdfs:subClassOf xxx .

obj rdf:type uuu.

obj rdf:type xxx

.

5 p1 owl:equivalentProperty p2

x p1 y

x p2 y

6 p1, owl:equivalentProperty p2

x p2 y

x p1 y

7 c1 owl:equivalentClass c2

x rdf:type c1

x rdf:type c2

8 c1 owl:equivalentClass c2

x rdf:type c2

x rdf:type c1

We have intentionally kept the list of necessary entailment rules for UML / OWL

profile very short. This enables to implement UML / OWL profile much more

efficiently than it would have been possible with more complete rule set approaching

RDFS or OWL-Lite. One of the RDF data stores providing a good support for the

introduced UML / OWL subset is OpenLink Virtuoso [9]. It allows storing

ontologies along with corresponding data and provides querying facilities through the

highly efficient subset of standard SPARQL (this SPARQL subset is adequate for the

graphic query language to be introduced in the Section 3). In particular this data store

provides a support for all of the abovementioned entailment rules.

Above described UML / OWL profile gives us very nice “glasses” providing

graphic UML visualization of ontology (both ontology schema part and ontology data

part). This kind of user-friendly visualization will be applied also in the next Section

to define a user-friendly graphic ontology query language, which provides nice

“glasses” also for generating SPARQL queries.

3 Graphical Query Language (GQL)

In this Section is described an original graphical query language (GQL) for querying

ontology data part, defined in the previous Section. The GQL can be considered as a

pre-processor for SPARQL because „behind the scenes” it produces the regular

SPARQL queries. The beauty of GQL is that it is compatible with the graphic UML

visualization of UML/OWL subset ontologies, thus providing a completely graphic

end-user interface for both ontology schema part exploration, as well as for ontology

data part querying. This is exactly the kind of end-user experience we want and with

the described techniques are able to provide to our real-life medical end-users, for

whom native SPARQL or native OWL serialization formats would be completely

unacceptable. The situation here is somewhat similar to SQL queries in relational

databases – end-users generally do not write such queries themselves, but rather relies

on the database programmer created user-interfaces; the difference and novelty in our

approach is that GQL substitutes the database programmer – GQL provides an

automatic translation from the end-user graphic queries into SPARQL.

GQL is based on the UML / OWL subset introduced in the previous Section, along

with its graphical ontology visualization illustrated in Fig.1 and Fig.2. The initial

ideas and motivation for development of GQL can be traced to [10]. The main

difference of our approach is that we propose more flexible and more powerful

graphical forms for query formulation. It shall also be noted that many more graphical

query languages [11], [12] have been proposed for direct querying of graph patterns

in RDF databases, but these are not relevant to our approach, as we rely on high-level

ontology schema visualization rather than on low-level data pattern visualization. A

similar idea is also described in [13]. However, it is less expressive and queries are

translated from SPARQL to SQL.

To describe GQL we will use as an example the simple university ontology schema

and corresponding data part shown in Fig. 1 and 2. The graphic query follows analogy

with queries in natural language in the sense that first we have to select the central

concept (class) we will be querying about. In case of university ontology, a typical

question (query) could be following: find all Teachers, which have

position=”Professor” and which have age>”45” and which work for

department=”Computer Science”. The same query converted into the GQL graphical

format is shown in Fig. 4.

Fig. 4. GQL representation of query: find all Teachers, which have position=”Professor” and

which have age>”45” and which work for department=”Computer Science”

In GQL the central concept (class) is depicted by the rounded rectangle with question

mark preceding the variable in front of class name. Other concepts utilized in the

query (rectangle) are regarded as „context concepts” and should be interpreted as

existential conditions – in our example there „exist y,z such that x.position.y and

x.worksFor.z”. Finally, there can be added also filtering constraints such as Teacher

age>”45”, position=”Professor”, departmentName=”Computer Science”.

Additionally, the graphic query lists the attributes of the central concept, which shall

be included in the query answer – these attributes are listed inside the rounded

rectangle of the central concept just below the class name. Table 2 shows the answer

for the graphic query in Fig. 4. The graphic query in Fig. 4 actually translates into the

SPARQL query shown below:

PREFIX uni:<http://www.owlontologies.com/University.owl#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?personName ?age WHERE

{?x rdf:type uni:Teacher.
?x uni:position ?y.
?y rdf:type uni:Position.
?x uni:worksFor ?z.
?z rdf:type uni:Department.
?x uni:age ?age.
?y uni:position ?position.
?z uni:departmentName ?departmentName.
OPTIONAL {?x uni:personName ?personName. }
FILTER (?age > 45 && ?position = “Professor” && ?departmentName =

“Computer Science”)}

Table 2. Answer for graphic query shown in Fig. 4.

personName age

John 56

Now let us consider a more complex query. We want to extend the previous query

so that it outputs also the names of Courses the Teacher teaches and we are interested

only in those Courses, which are taken by some Student. In this query answer should

include attributes from two classes, therefore we have to introduce a “context frame”

(bold border) containing the second central concept Course, subordinated to the main

central concept Teacher. The corresponding graphic query is shown in Fig. 5, Table3

contains the answer to this query and below is shown the corresponding SPARQL

query:
PREFIX uni:<http://www.owlontologies.com/University.owl#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?personName ?age ?courseName WHERE

{?x rdf:type uni:Teacher.
?x uni:position ?y.
?y rdf:type uni:Position.
?x uni:worksFor ?z.
?z rdf:type uni:Department.
?x uni:age ?age.
?y uni:position ?position.
?z uni:departmentName ?departmentName.
OPTIONAL { ?x uni:teaches ?a.
?a rdf:type uni:Course.
?a uni:takenBy ?b.
?a rdf:type uni:Student.
}
OPTIONAL {?x uni:personName ?personName. }
OPTIONAL {?a uni:courseName ?courseName. }
FILTER (?age > 45 && ?position = “Professor” && ?departmentName =

“Computer Science”)}

Fig 5. Graphic query with optional subordinate “context frame”

Table 3. Answer for graphic query shown in Fig. 5.

Teacher.personName Teacher.age Course.courseName

John 56 Programming

As we see from answer Table 3, it contains also the names of Teachers who do not

teach any Courses. This is because the semantics of the bold context frame is that its

content is optional. If we want to get in the answer table only those Teachers which

do teach some Course, then we must replace the bold context frame with a double line

context frame meaning that its content is mandatory. The corresponding query is

shown in Fig. 6. The corresponding SPARQL query will be similar to the previous

one, except that there will be no OPTIONAL keyword for the part corresponding to

the context frame.

Fig. 6. Graphic query with mandatory subordinate “context frame”

Another important query case is when we want to find the Teachers which do not

teach any Course. This is provided by the third “banned” variation of the context

frame shown in Fig. 7. The corresponding SPARQL query will be same as the query

in Fig. 5, except that it will contain additional statement FILTER(!(bound(?a)).

Fig. 7. Graphic query with banned subordinate “context frame”

As a “syntactical sugar”, it is allowed to omit the context frame for subordinate

central concepts as shown in Fig. 8, which means that all concepts in the rounded

rectangles are mandatory. Therefore query in Fig. 8 is semantically equivalent to the

query in Fig. 6. This format is more convenient when query involves many central

concepts.

Fig. 8. Graphic query with mandatory subordinate “context frame” omitted

The last feature of GQL is the concept intersection. This feature is necessary if we

want to find all Students which are also Teachers for some Course. The graphic

format for such query is shown in Fig. 9 and the corresponding SPARQL query is:
PREFIX uni:<http://www.owlontologies.com/University.owl#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?personName WHERE

{?x rdf:type uni:Student.
?x rdf:type uni:Teacher.
?x uni:teaches ?y.
?y rdf:type uni:Course.
OPTIONAL {?x uni:personName ?personName. }}

Fig. 9. Graphic query with concept intersection

Fig. 10 illustrates a more complex GQL query: find all Students younger than 27

years which are enrolled in the Computer Science department and take some Course

thought by the Professor working for Computer Science department. Answer to this

question is presented in Table 4.

Table 4. Answer for graphic query shown in Fig. 10.

Student.studentID Student.personName Student.age

stud4 Jessica 26

Finally, Fig. 11 illustrates one more complex GQL query: find all Students X

(student ID, person name, age) and all Teachers Y (person name) such that:

• X enrolled in Computer Science Department and X younger than 27 years

• Y works for Computer Science Department and has position Professor

• Exist Course B such that X takes B and B is taught by Y

Answer to this question is presented in Table 5.

Fig. 10. An example of a more complex GQL query

Fig. 11. An example of a more complex GQL query

Table 5. Answer for graphic query shown in Fig. 11.

Student.studentID Student.personName Student.age Teacher.personName

stud4 Jessica 26 John

The above examples demonstrated the core features of GQL, which are sufficient

for most end-user needs. Our intention is to eventually extend GQL with more

graphical features in order to cover all SPARQL functionality relevant to the

considered UML/OWL environment.

4 GQL Tool Support

We have also developed a tool which implements the described graphic query

language GQL. Fig. 12 shows the functional structure of this tool. When started, the

tool connects to the specified RDF database and snoops from it the schema part of the

stored ontology through the set of SPARQL queries. At this point the tool can display

the ontology schema part in the graphical format as shown in Fig. 1.

Fig. 12 illustrates the main steps supported by the tool: graphic query

construction, translation of graphic queries into SPARQL, submitting queries to RDF

database and retrieval of answers, formatting of the answers into the user-friendly

format. Out of these steps, the end-user support for graphic query construction is the

most elaborated and essential for the user part of the system and we will explain this

step in more detail.

Fig 12. Structure of the tool implementing GQL

 As the first step, user is offered to select the “central concept” from the list of

all classes in the ontology schema – once selected, it is automatically depicted

graphically. Then user can add some attribute conditions to the central concept – only

attributes relevant to the central concept are shown and once selected, are

automatically depicted graphically.

 A special service is developed for adding subordinate central concepts (the

ones belonging to subordinate context frames). Here user again can select any class

from the ontology schema and the tool automatically calculates several shortest paths

of ontology properties and classes, through which the new concept could be linked to

the current central concept – the user only has to manually select one of the presented

available paths and the intermediate properties and classes will be automatically

added to the graphic query.

 The tool also has special support for EnumeratedClasses. For these classes

during query construction tool allows to set as condition only instances defined for

this class in the ontology schema. For example, for concept Position in the ontology

from Fig. 1, the tool would prompt end-user to select only one of the values:

1- Professor

2- Lecturer

3- Assistant

The GQL tool itself is implemented through the graphic editor toolset [14], [15]

providing high-level graphic diagram presentation and editing primitives. A

screenshot of the implemented GQL tool is shown in Fig. 13.

Fig. 13. A screenshot of the implemented GQL tool.

5 Conclusion

The described methodology has been successfully implemented and tested in the

practical application in the medical statistics domain with medical researchers as end-

users. We have successfully transferred data from several relational databases into

RDF database according to ontology format described in Section 2 and using transfer

methodology described in [16].

We have also tested several RDF databases. Our initial implementation was based

on Sesame (version 2.0-1) [17] RDF database, but it turned out to be too slow even

for sub-million triples RDF database – most likely due to poor query execution

planning for our automatically generated SPARQL queries. Meanwhile, by switching

to OpenLink Virtuoso RDF database (version 05.08.3034) query execution

performance improved radically and is now generally comparable to that of similar

relational databases.

In the future we look forward for high performance RDF databases to support

efficiently more entailment rules. For example, due to lack of support for

owl:inverseOf entailment in OpenLink Virtuoso RDF database [18], currently we

have to store separate triples for both directions of association. Other useful

entailment would be support for symmetric properties. Once available, such features

could be added to the described UML/OWL subset resulting in more straight-forward

query construction and reduced storage data volumes.

References

1. Web Ontology Language (OWL). W3C, 2004. URL: http://www.w3.org/2004/OWL/

2. Sirin, E., Smith, M., Wallace, E. Opening, Closing Worlds – On Integrity Constraints.

ISWC 2008, Workshop: OWL: Experiences and Directions

3. H. J. ter Horst. Completeness, decidability and complexity of entailment for rdf schema and

a semantic extension involving the owl vocabulary. J. Web Sem., 3(2–3):79–115, 2005.

4. Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M. Annamalai, and J. Srinivasan.

Implementing an Inference Engine for RDFS/OWL Constructs and User-Defined Rules in

Oracle. In 24th International Conference on Data Engineering. IEEE, 2008.

5. Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U. OWL 2: The

next step for OWL. J. of Web Semantics, 6(4):309-322, November 2008.

6. OWL 2 Web Ontology Language : Profiles, http://www.w3.org/TR/2008/WD-owl2-profiles-

20081202/

7. SPARQL Query Language for RDF, http://www.w3.org/TR/rdf-sparql-query

8. Ontology Definition Metamodel, http://www.omg.org/docs/ptc/07-09-09.pdf

9. Erling, O. : Towards Web Scale RDF. In : ISWC 2008, Workshop: Scalable Semantic Web

knowledge Base Systems(SSWS2008).

10. Athanasis, N., Christophides, V., & Kotzinos, D. Generating On the Fly Queries for the

Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL). In the 3rd International

Semantic Web Conference (ISWC2004), November 7-11, Hiroshima, Japan, pp. 486-501.

(available at http://dblp.uni-trier.de/rec/bibtex/conf/semweb/AthanasisCK04)

11. Smart, P. R., Russell, A., Braines, D., Kalfoglou, Y., Bao, J. and Shadbolt, N. (2008) A

Visual Approach to Semantic Query Design Using a Web-Based Graphical Query Designer.

In: 16th International Conference on Knowledge Engineering and Knowledge Management

(EKAW 2008), 29th September-3rd October 2008, Acitrezza, Catania, Italy.

12. Fadhil, A., Haarslev, V.: OntoVQL: A graphical query language for OWL ontologies. In:

International Workshop on Description Logics. (2007)

13. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.: Towards a

semantic web of relational databases: A practical semantic toolkit and an in-use case from

traditional chinese medicine. In Cruz, I.F., et.al, eds.: 5th International Semantic Web

Conference. Lecture Notes in Computer Science (4273), Springer (2006) 750–763

14. Bārzdiņš, J., Zariņš, A., Čerāns, K., Kalniņš, A., Rencis, E., Lāce, L., Liepiņš, R., Sproģis,

A. GrTP: Transformation Based Graphical Tool Building Platform. In: MoDELS`07,

Workshop: Model Driven Development of Advanced User Interfaces (MDDAUI-2007),

available at http://ceur-ws.org, Vol 297.

15. Bārzdiņš, J. , Kozlovičs, S. , Rencis, E. The Transformation Driven Architecture. In:

OOPSLA`07, Workshop: DSM’08, USA, Nashville, October 2008, pp.60-63.

16. G.Barzdins, E.Liepins, M.Veilande, M.Zviedris, "Semantic Latvia Approach in the Medical

Domain", Proceedings of the 8th International Baltic Conference (Baltic DB&IS 2008), June

2-5, Tallin, Estonia, Tallinn University of Technology Press, 89.-102. pp.

17. Broekstra, J., Kampman, A., & Harmelan, F.v. (2002) Sesame: A Generic Architecture for

Storing and Querying RDF and RDF Schema. In The Semantic Web - ISWC 2002, volume

2342 of Lecture Notes in Computer Science, pp. 54-68. (available at

http://www.cs.vu.nl/~frankh/postscript/ISWC02.pdf)

18. RDF Inference in Virtuoso, http://docs.openlinksw.com/virtuoso/rdfsparqlrule.html

